Rate of convergence for Hilbert space valued processes
نویسنده
چکیده
Consider a stationary, linear Hilbert space valued process. We establish Berry-Essen type results with optimal convergence rates under sharp dependence conditions on the underlying coefficient sequence of the linear operators. The case of non-linear Bernoulli-shift sequences is also considered. If the sequence is m-dependent, the optimal rate (n/m)1/2 is reached. If the sequence is weakly geometrically dependent, the rate (n/ log n)1/2 is obtained. AMS 2000 Subject classification. 60F99
منابع مشابه
Convergence Rate of Empirical Autocovariance Operators in H-Valued Periodically Correlated Processes
This paper focuses on the empirical autocovariance operator of H-valued periodically correlated processes. It will be demonstrated that the empirical estimator converges to a limit with the same periodicity as the main process. Moreover, the rate of convergence of the empirical autocovariance operator in Hilbert-Schmidt norm is derived.
متن کاملNonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings
In this paper, based on viscosity technique with perturbation, we introduce a new non-linear viscosity algorithm for finding a element of the set of fixed points of nonexpansivemulti-valued mappings in a Hilbert space. We derive a strong convergence theorem for thisnew algorithm under appropriate assumptions. Moreover, in support of our results, somenumerical examples (u...
متن کاملApproximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces
This paper introduces an implicit scheme for a continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup. The main result is to prove the strong convergence of the proposed implicit scheme to the unique solutio...
متن کاملOn new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملOn the existence of Hilbert valued periodically correlated autoregressive processes
In this paper we provide sufficient condition for existence of a unique Hilbert valued ($mathbb{H}$-valued) periodically correlated solution to the first order autoregressive model $X_{n}=rho _{n}X_{n-1}+Z_{n}$, for $nin mathbb{Z}$, and formulate the existing solution and its autocovariance operator. Also we specially investigate equivalent condition for the coordinate process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016